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Gaussian Fluctuations for the Magnetization of 
Lee-Yang Ferromagnets at Zero External Field 

Joi~l D e  Coninck 1'2 

Received September 4, 1986 

We consider the fluctuations of the block spin magnetization normalized by the 
square root of the considered number of spins in a block A for Lee-Yang 
ferromagnets. It is established that the fluctuations are Gaussian when A • Z ~/at 
zero external field whenever the susceptibility is finite (i.e., above the critical 
temperature) and converges to the second derivative of the pressure at zero field. 
The validity of this fluctuation-dissipation condition is known to hold for a 
large class of Lee-Yang models, including, for instance, classical Heisenberg 
ferromagnets. 
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1. I N T R O D U C T I O N  

Gaussian fluctuations have been a subject of considerable interest rather 
recently. Several authors have been able to prove the validity of this result 
for the magnetization of ferromagnets. For completeness let us briefly 
review the literature. 

One of the first proofs of such a general result was given by Baker and 
Krinsky./3) Their method rests on the GKS and Gaussian inequalities and 
can therefore be applied at zero external field only. A second very 
interesting step was achieved by Iagolnitzer and Souillard, ~4t who proved 
the Gaussian fluctuations of the magnetization using the Lee-Yang 
theorem at nonzero external field. Their proof proceeds with a one-com- 
ponent ferromagnet, but can easily be extended to multicomponent 
ferromagnets. A very powerful method has also been proposed by 
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Newman, (5'6) but it relies on the F K G  inequalities and is therefore restric- 
ted to one-component ferromagnets. 

As one of the most powerful methods dealing with multicomponent 
ferromagnets rests on the Lee-Yang theorem, (~3 16,23) it would clearly be 
desirable to extend Iagolnitzer and Souillard's method in order to be able 
to study the fluctuations of the magnetization at zero external field for 
models with several spin components. This is precisely the aim of this 
paper. 

In Sections 2 and 3 we study the fluctuations of the magnetization 
(suitably renormalized) for Lee-Yang ferromagnets at zero external field. It 
is established that these fluctuations are Gaussian as the number of spins 
becomes infinite whenever the susceptibility is finite (i.e., above T,.) and 
converges to the second derivative of the pressure at zero field. Let us stress 
that the proof of this fluctuation-dissipation relation only requires some 
knowledge about the two-point function at zero external field. This 
property has been in particular established by De Coninck and Dunlop (9) 
for a large class of Lee-Yang multicomponent ferromagnets using Simon 
and Gaussian inequalities. (18 221 Our method of proof is new and relies on a 
detailed study of the integrated two-point function at nonzero external field 
viewed as a characteristic function (Fourier transform of a positive 
measure). This property follows from the connection established in Refs. 7 
and 8 between the Lee-Yang theorem and the infinitely divisible charac- 
teristic functions. Some general remarks on the validity of our result are 
developed in Section 4. 

2. THE PROBLEM 

Let us first specify the models in which we are interested. Consider a 
block A c A' c Z J. We associate a spin variable ~i (with one, two, or three 
components) at each vertex of A'. The corresponding family of finite- 
volume Gibbs states are chosen to be 

k i , j ~ A '  k e A  ) k ~ A '  

where the normalization factor is given by 

The coefficients Jij >~ 0 describe the interactions between pairs of spins, 
fi is the inverse temperature, and h is the applied external field on A in 
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units of temperature. The interactions Jij are translation-invariant and such 
that 

Jo.< +oo (3) 
j ~ Z  d 

The free spin measure v(~i) (rotation-invariant) has to be chosen such that 

f~n exp(ba~) dv(~i) < +oo (4) 

for any real b (n = 1, 2, or 3). Moreover we shall also require the validity of 
the Lee-Yang theorem; that is, for n = 1 or 2, (13 16) the function 

g(z ) = f~. exp(za]) dv( r i) (5) 

has only pure imaginary zeros, and for n = 3, we explicitly choose t23) 

dv(~) = ~(~2 _ 1) d~ (6) 

o r  

dv(a) = exp(  - 2  I~l 4 -~- ]/ I~l 2) dl~(.~, > 0, ]2 ~ ~ )  (7) 

Let us now introduce the magnetization variable M A associated to the 
block A c A': 

M a = ~ a~ (8) 
i~A 

Since the joint probability distribution of the configurations 
(~1, ~2,-.., ~lA'l) is given by the finite-volume Gibbs state, (8) clearly 
represents a sum of dependent random variables. We shall, however, see 
that above the critical temperature, the dependence is weak enough to 
ensure the validity of the classical central limit theorem: 

MA/IAI 1/2 weakly > Gaussian 
A , A '  T ~. d 

As stated in the introduction, this is known to occur when the external field 
is nonzero. (4) 

In the following we shall examine the h = 0 case. 
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3. T H E  R E S U L T S  

Let us first notice that the existence of the pressure p(fl, h) (ther- 
modynamic limit) has been established for the class of models we consider 
here, (~~ where p(fi, h) is defined, for instance, by 

�9 1 
p(fl, h ) =  !!md ,--~,, log ZA',A,(fl, h) 

A T Z  [ZI [ 
(9) 

The limit A' T 7/d has to be taken in the van Hove sense as usual. 
For  n - -1  and n = 2 ,  it is also known (~~ that there exists one 

translation-invariant, infinite-volume Gibbs state as A'T 7/d whenever the 
spontaneous magnetization (@/Oh)(fl, 0) exists. That  is, for any sequence 
A;~?~ ~ 

lim <')~A ' ~  ( ' )~Z '~ ( lO) 
A' TZ d 

where 

<. 

denotes the mean value of" with respect to (1) at temperature f l-  ~ and zero 
external field. For  n = 3, one may use the classical argument of com- 
pactness to show that there exists, at least for a subsequence (A~k), an 
infinite-volume Gibbs state such that the following limit exists: 

In order to show that 

lim ( . ) ~ , o  = ( . ){ ,o  (11) 
~mk T ~ 

MA/[AI 1/2 ) G a u s s i a n  (12) 
A,A'  T Z d 

in the sense of weak convergence of probability distributions, it remains to 
study the following limit for any real t: 

lim (exp(tMA/]A] 1/2))~,o (13) 
A TZ d 

This is precisely the aim of the following result�9 

T h e o r e m  1. For  the ferromagnets defined in Eqs. (1)-(7), if the 
temperature is such that 

1 
sup (M~)~'2 < +oe  (14) 
AN 
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and 

then, for any real t, 

where 

lim _~1 (M2)~,0 c~2P 
~,~ LA( =~-~ (~' 0) 

lira (exp(tM A/tA] 1/2) )~,~ = exp(t2Z/2) 
a ? ~  d 

(15) 

(16) 

z=a2p(~,0) (17) 

Romorks. 1. If n = l ,  hypothesis (14) reduces to Newman's 
hypothesis concerning the finiteness of the susceptibility as stated in Refs. 5 
and 6. The validity of (15) can be established by using, for instance, FKG 
inequalities. (24) 

2. For n--3, a subsequence Amj has to be considered. Since the 
corresponding modifications in our formulas are obvious, we do not 
burden the notation. 

Let us first give some technical results, the proofs of which can be 
found in the Appendix. 

komma 1. For the ferromagnets defined in Eqs. (1)-(7), there 
exists an infinitely divisible characteristic function ~A(t) such that for any 
real t and for any fixed fl 

(exp(tMA) )~ '~ 1/C~ A(t ) (18) 

I _ e m m a  2 .  

of ferromagnets we consider [Eqs. (1)-(7)], if 

1 
sup i-~7 (M~ 5~'~ < +oo 

and 

With the previously defined notations and for the class 

(19) 

1 
lim (MZA)~,o =~h~ (fl, O) 

then for any real t with 7= t/[AI ~/2 

(20) 

lim ( ( M A ;  MA "MA)~ '~ = 1 (21) Arid >~"7<MA, 
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where 

( M A  ; MA )~'~ -~ ( M  2 }~'~ - ( ( M  A )~'dh) 2 (22) 

Proof of  Theorem 1. According to Lemma 1, one knows that there 
exists an infinitely divisible characteristic function ~b a such that for any 
real t 

(exp(tMA/]A] 1/2) eo 1/2) )~'a = 1/~bA(t/IAI (23) 

Let us now assume that the variance of the corresponding probability 
distribution is finite for any A c Z a. This means 

1 
- ~ b ~ ( O )  = 7--7, ~ ( M2 >{,o < + c~ ( 2 4 )  

1/11 

where the double prime indicates the second derivative with respect to t. 
This implies a restriction on the temperature range. More explicitly, we 
shall assume the validity of (14); then (24) will clearly be satisfied. It 
should be stressed that if the variance of the magnetization variable exists 
as A'k] 'Y a, the mean value of the magnetization has to be zero at 
vanishing external field. This allows us to use the results of Refs. 10-12. 
This corresponds in fact to temperatures fl - 1 above the critical temperature 
tic 1 defined by 

1 
t ic= sup{fi e N~- �9 sup ( M 2  }~,~ < +oo} A 7  

(25) 

With this restriction on temperature, one can easily prove (7~ that there 
exists a bounded, nondecreasing function KA(x ) with KA(--oO)=0 
(Kolmogorov's spectral function 11)) such that 

log(exp( iMA ) }~,o = ( 1 --  COS(iX) dKA(X) ( 2 6 )  
x 2 JR  

the second derivative with respect to t of which leads to 

( M A ; M A )~'~ = f COS(iX) dKA(X ) (27) 

One therefore has that for any t 

( M A  ; MA }~'d <<, ( M A  ; MA }~.o (28) 
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Hypothesis (14) thus ensures that the logarithm of the lhs of (23) admits a 
Taylor approximation of order 2: 

log(exp(tMA/lAI 1/2))flz'd~ lt2/~/t �9 =~ .,~,~A,MA)~'OAZ/IAI (29) 

with 0 < OA < 1. To establish the validity of (16), one has to prove that for 
any real t 

1 
lim - -  ( MA " M A )~'J = 632 p(fl, 0) (30) 
AtZ~ IAI 

Assuming the validity of (15), it remains to show that for any real t 

lim ((MA ;MA ) ~ r  ;MA )~,o)= 1 (31) 

This result has precisely been established in Lemma 2. This achieves the 
proof. | 

4. GENERALITY OF THE RESULTS 

Let us finally comment on the generality of the result reported in this 
paper. The Gaussian nature of the magnetization fluctuations for Lee-Yang 
ferromagnets reduces now to the following analysis: 

1. If hva0, then one can use Iagolnitzer and Souillard's result, as 
already stated in the introduction. 

2. If h = 0, then one has to prove the validity of our hypotheses (14) 
and (15). 

It seems to us that hypothesis (14) is quite natural, since it only 
requires the finiteness of the susceptibility. This simply means that we 
consider a temperature above the critical temperature as defined in (25). 
Hypothesis (15) is relative to a fluctuation-dissipation relation, but it only 
requires the validity of this property for the integrated two-point function. 
It has, however, not yet been possible to establish the validity of (15) using 
the Lee-Yang theorem only. 

Let us point out that Lebowitz has been able to establish this fluc- 
tuation-dissipation relation using F K G  inequalities above the critical 
temperature (25) and that De Coninck and Dunlop (9) extended this result to 
multicomponent ferromagnets using Simon (18'19) and Gaussian (2~ 
inequalities. This already ensures the validity of the Gaussian fluctuation 
theorem for classical Heisenberg ferromagnets above the critical tem- 
perature at zero external field. 
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Finally, we would like to point out that our method of proof can also 
be easily applied when the external field is nonzero. We do not report this 
calculation here, since the result is already known. (4) 

APPENDIX 

Proof of Lemma 1. By definition, one has, with 7= t/JA] 1/2, 

(exp(TMA))~A'9 = f~,~'t exp(t'MA ) d#A A'((%)j~A' 113, O) (A.1) 

which, using (2), leads to 

(exp(tMA) )~A'9 = ZA,A'(fl, t)/ZA,A'(B, 0) (A.2) 

The Lee-Yang theorem (13 17) now guarantees that, as a function of 7, the 
rhs of (A.2) has only pure imaginary zeros. This allows us to prove (v) that 
there exists an infinitely divisible characteristic function 0~.A' (Fourier 
transform of a probability measure) such that for any real 7 

Z A,A,(fl, T) 1 
ZA,Afl, o) ~,,,,(T) (A.3) 

Let us now consider the limit A' I" Zd- Using the classical argument of com- 
pactness, there exists, at least for a subsequence (A~,~), an infinite-volume 
Gibbs state 

such that 

uA,~4(oj)j~ ~.1 •, 0) 

lim (exp(TMA))A;, k 
Am k T zd  

By convexity, it is easily seen that the rhs of this expression is a continuous 
function of t. This ensures that the limit 

lim OA,Amk(t ) (A.5) 
A;, k ~ zd 

exists and is a continuous function of t. By the continuity theorem, ~2) one 
therefore knows that there exists a characteristic function OA(t) such that 

lim OA,a' (t) = Oi(t) (A.6) 
AL k ~ ~ 
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for any real t. That this function OA(t) is also infinitely divisible follows 
easily from the property (Ref. 2, p. 110) that "a characteristic function 
which is the limit of a sequence of infinitely divisible characteristic 
functions is infinitely divisible." | 

Proof of  1.emma 2. We shall in fact prove that the ratio 

fA(t) = <MA ; MA }~Z'J/<MA ; MA )~.o (A.7) 

is a characteristic function and the limit as A T Zd is also a characteristic 
function. Knowing that the convergence of a sequence of characteristic 
functions is uniform in every finite interval, (2) one easily gets (21), since 
7= t/[A[ ~/2 is going to zero as A T yd. 

Let us prove that the ratio fA(t) is a characteristic function. 
Using the classical representation formula of the logarithm of an 

infinitely divisible characteristic function, (1'2'v'8) one gets, taking the second 
derivative with respect to t of the logarithm of (18), 

< M A ; M A >~'~ = ;~ COS(tX) dKA(X) (A.8) 

from which one deduces that 

<MA; MA>~ '~ KA(+ o0) (A.9) 

This leads to the identity 

/(A(x) 
fA(t) = f~ cos(tx) d ~ dKA(X~) (A.10) 

Since KA(X ) is a bounded, nondecreasing function, this function fA(t) can 
indeed be identified with a characteristic function�9 This achieves the first 
step of the proof. 

Let us now consider what happens as A T Y.  One gets 

lim f A ( t ) = (  lim 1 )/(li~ [-~t ) ATZd \ATZd-~[[ < M A ; M A ) ~ ' t  u <M2A>~'2 (A.11) 

Using hypotheses (19) and (20) and the Lee-Yang theorem, one finds that 

lim ( (MA, M A ~t 2 ~o �9 >z'a/<MA>za)=?~p(fi, t)/O2p(fi, 0) (a.12) 
ATZ d 

That this limit is itself a characteristic function requires a proof of its con- 
tinuity at t = 0. This can easily be done using the result of Ref. 8. Indeed, 
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one knows that for the class of models we consider the thermodynamic 
limit of the pressure exists and is a continuous function of the external field: 

lira [(exp(tMA))~A'O] 1/IAI =exp{p(fl,  t)--p(fl, 0)} (A.13) 
A1"~d 

This implies that there exists an infinitely divisible characteristic function 
~(t) such that (8) 

exp{p(fl, t ) -  p(fl, 0)} = 1/~u(t) 

One deduces from this formula that 

(A.14) 

p(fl, t) = p(fi, 0) - log 7J(t) (A.15) 

and therefore 

aZp(fi, t ) =  T"(t) [~v'(t)] 2 (A.16) 

This means that there exists a probability distribution function H(x) such 
that 

~?: p(fl, t )=  {f x2 cos(tx) dH(x) f cos(tx) dH(x) 

--If  xsin(tx)dH(x)]2} 

x I !  cos(tx) dH(x)l 2 (1.17) 

That 8~p(/3, t) is a continuous function of t follows easily from the 
existence of 0~ p(fi, 0). 

One has therefore proven that fA(t) is a sequence of characteristic 
functions that converges as A 1" Za to a characteristic function. Since the 
convergence of a sequence of characteristic function is uniform with respect 
to the variable t in every finite interval, (2) we easily achieve the proof of the 
lemma by noticing that 

lim fA(t/IA[1/2)= lim fA(0)= 1 | (A.18) 
A ~ Z d AT  2~d 
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